
ECE 264 Spring 2023
Advanced C Programming

Aravind Machiry
Purdue University

1

Homework 1
Selection Sort

Where sorting is used?

yunglu@purdue.edu

yunglu@purdue.edu

Selection Sort

5 3 7 8 1 4 6 2 9

Find the smallest value

Swap with the first value
5 3 7 8 1 4 6 2 9

1 3 7 8 5 4 6 2 9

1 3 7 8 5 4 6 2 9

Will not touch the first value any more

Selection Sort

1 3 7 8 5 4 6 2 9

Find the smallest value

Swap with the first value
1 3 7 8 5 4 6 2 9

1 2 7 8 5 4 6 3 9

1 2 7 8 5 4 6 3 9

Will not touch the first two values any more

Selection Sort

1 2 7 8 5 4 6 3 9

yunglu@purdue.edu

Find the smallest value

Swap with the first value
1 2 7 8 5 4 6 3 9

1 2 3 8 5 4 6 7 9

1 2 3 8 5 4 6 7 9

Will not touch the first three values any more

Selection Sort
• Two levels of iterations:
• Outer: from the first element to the second last element

o Inner: from one after the outside to the last element
o Select the smallest value

• If the smallest value is different from the outside value,
swap

• If there are n elements, at most n swaps
• The number of comparisons is ≈ (n – 1) x (n – 1) /2 ≈ n2

yunglu@purdue.edu

main.c

an array of integers

size of the array (# elements)

yunglu@purdue.edu Check whether
elements are sorted

create test cases

create correct answer
save the output
to a file

treat the content
as numbers

save the output
to a file

main.c

yunglu@purdue.edu main.c

before using argv[1],
necessary to check
whether argc is at least two

yunglu@purdue.edu main.c

read one integer

main.c

main.c
release memory created by malloc

Makefile

make testall: run all three test cases

Makefile

make testfor: run all three test cases

How to test code (and
not)?

Separate “Product” from “Development”
code

Product Code Development Code
Create products Internal use
Polished Experimental
Only necessary for product May include additional for instrumentation
No assert May use assert in testing
No debugging message May include debugging messages

homework submission
1:5 rule: for each line of product code,
write 5 lines of development code

How to test your code correctly?
Product Code

X = A function your write

ssort

Development Code

Prepare data for testing X
call X with the proper data
check results
print debugging messages
(use assert here if you wish)

main

How to test your code incorrectly?
(mix product code and testing code)
X = A function your write (Product Code)
{

….
necessary code
check results
debugging messages
assert
….

}

Linux Tools for C
Programming

Many Linux tools for C Programming

A Simple C Program

gcc: GNU C Compiler

gcc: GNU C Compiler

source code

gcc -o output

output file name

gcc -o output

output file name

Do not call it test because
test is a Linux command.

If you call it test, which program
do you actually execute?

Execute the program

execute the program
./ means this directory

Print 5 x 5 multiplication

Compare correct and wrong answers

correct wrong

Enable gcc warnings

-Wall enables warnings
gcc warnings can help you identify problems early.

General Rule in Programming:

The earlier you can identify problems, the better.

Do not wait until testing. It requires much more effort.

gdb: interactive debugging
• breakpoint: stop at specific line (can be conditional)
• print: see the value of a variable
• see stack memory

Program to compute factorial
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
int main(int argc, char **argv) {
 if (argc < 2) {
 printf("Number expected\n");
 return EXIT_FAILURE;
 }
 int n = strtol(argv[1], NULL, 10);
 int orig = n;
 unsigned int f = 1;
 while (n >= 0) {
 f = f * n;
 n--;
 }
 printf("Number=%d, Factorial=%u\n", orig, f);
 return EXIT_SUCCESS;
}

-g after gcc enables debugging

gdb the executable (not .c)

Set breakpoint by the name of a function

Set breakpoint by the line number

Run the program with two arguments 3 and 5

list code around the breakpoint

gdb commands
• b: set a breakpoint
• r: run the program
• list: list the code

Set breakpoint by file name: line number

Continue

print the value

print the value

backtrace, show call stack

currently running function is frame 0

line number

continue

shows three frames

gdb commands
• print: print a variable
• c: continue to the next breakpoint
• bt: show call stack
• b: set a breakpoint
• r: run the program
• list: list the code

test coverage

enable test coverage

test coverage

execute the program

test coverage

run gcov

test coverage

generated files

means untested

5: Some lines have been tested twice.

Where does a C program
execute?

58

Processor (CPU)

59
32-bit or 64-bit registers

The Need for Memory

60

int main() {
 char buff[4096];
 printf("Hello World\n");
 return EXIT_SUCCESS;
}

The Need for Memory
• CPU has limited registers!

• A program might need more data than that can
be stored in registers.

• Where do we store additional data?

61

Different kinds of memory
• Main memory or RAM.

– Fast.
– Only available during a program execution.
– Relatively expensive.

• Secondary storage or Disk.
– Slow.
– Available for the entire lifetime of the disk.
– Cheap (Flash drive, External drive).

62

Accessing Memory
• Main memory or RAM:

– Accessed in terms of bytes.
– Each byte has an address.
– Address:

• 32 or 64-bit number depending on the size of
registers.

63

Memory Size
• Maximum number of bytes in Main memory?

– 32-bit Addresses?
– 64-bit Addresses?

64

Memory Size
• Maximum number of bytes in Main memory?

– 32-bit Addresses? 2^32
– 64-bit Addresses? 2^64

65

Memory Sizes
• Secondary storage or Disk.

– Unlimited.

66

Main Memory
• Every program has access to the entire main

memory.
– 2^64 bytes (mostly less because some

memory will be used for operating system).

– Virtual Memory:
• Address in one program is different from address

in another program.
67

Main Memory
• What do we need memory for?

68

Main Memory
• What do we need memory for?

– To store instructions of the program.
– To store local variables.
– To store global variables.
– To store heap (allocated through malloc).

69

Main Memory
• What do we need memory for?

– To store instructions of the program:
• Available for the entire lifetime of program.
• Read-only (We do not modify instructions)

70

Main Memory
• What do we need memory for?

– To store instructions of the program:
• Available for the entire lifetime of program

(readonly).
– To store local variables:

• Available only during the function execution.

71

Main Memory
• What do we need memory for?

– To store instructions of the program:
• Available for the entire lifetime of program

(readonly).
– To store local variables:

• Available only during the function execution.
– To store global variables:

• Available for the entire lifetime of program.

72

Main Memory
• What do we need memory for?

– To store instructions of the program:
• Available for the entire lifetime of program

(readonly).
– To store local variables:

• Available only during the function execution.
– To store global variables:

• Available for the entire lifetime of program.
– To store heap (allocated through malloc).

• Available for the entire lifetime of program.
73

Types of Program Memory

Stack Memory
(Stack Segment)

Heap Memory
(Data Segment)

Program Memory
(Code Segment)

74

Types of Program Memory

75

Stack Memory
(Stack Segment)

Used to store local variables
and return addresses.

Heap Memory
(Data Segment)

Used to store global variables
and malloced buffers.

Program Memory
(Code Segment)

To Store instructions.

Memory Management
• Every program has access to entire memory

(2^64 bytes) = 16 Million GB
– I have only 16 GB RAM!! How can run a

program?
– Can I run multiple programs?

76

Operating System
• Operating System mediates all access to hardware (e.g., memory)

and gives an illusion that every program has 2^64 bytes.

77

How often we
interact with OS?

Memory Allocation
• Every program has access to entire memory

(2^64 bytes) = 16 Million GB.

• Can we access it freely?
– NO! Why?

78

Memory Allocation
• OS allocates memory on request and also on

demand.

• We need to ask OS to allocate our memory!

79

Memory Allocation
• What happens if OS always allocates entire

2^64 bytes to all programs?

• Small programs v/s large programs?

80

Types of Program Memory

81

Stack Memory
(Stack Segment)

Allocated on Demand (When a
function starts).

Heap Memory
(Data Segment)

Allocated on Request.

Program Memory
(Code Segment)

Allocated at the Beginning.

Types of Program Memory

82

How should we allocate memory?

83

Code

Stack (buff)

Heap

• Program 1:
– Require No heap memory.
– Large stack memory.
– Code segment.

0

2^64 -1

int main() {
 char buff[4096];
 printf("Hello World\n");
 return EXIT_SUCCESS;
}

How should we allocate memory?

84

Code

Stack

Heap (h)

• Program 2:
– Large heap memory.
– Small stack memory.
– Code segment.

0

2^64 -1

int main() {
 char *h = malloc(sizeof(char)*4096);
 printf("Hello World\n");
 return EXIT_SUCCESS;
}

How should we allocate memory?

85

• Program 3 (dynamic requirements):
– Large stack when in function foo.
– Large heap when in function

main.
– Code segment.

int foo() {
 char buff[4096];
 ...
}
int main() {
 char *h = malloc(4096*sizeof(char));
 ...
 free(h);
 foo();
 return EXIT_SUCCESS;
}

Code

Stack (buff)

Heap

Code

Stack

Heap (h)

main foo

Dynamic memory allocation

86

Code

Stack

Heap

Stack grows
down Heap grows up

• Memory allocated
dynamically based on
program usage.

• Why don’t these
segments grow in the
same direction?

Stack Memory or Stack Segment

87

• Follows the "first-in last-out" (or last-in first-out)
rule.

• is indirectly controlled by your programs.
• is directly controlled by compilers and operating

systems.

Stack

88

• "Stack" means what comes first leaves last.
• You are using this concept everyday.
• You put on socks before putting on shoes. You take off the

shoes before taking off the socks.
• You put on a shirt before wearing a jacket. You take off the

jacket before taking off the shirt.
• When you put a book on the top of a pile, the last added

book is removed first.

Stack Memory or Stack Segment

89

• Will have once record for every “Active” function.
– Active function: Function whose execution is

not finished.

• This record is also called “Stack Frame”.

Contents of a Stack Frame

90

#include <stdio.h>

int main() {
 f1();
 printf("Main Exiting\n");
}
void f1() {
 f1();
 printf("f1 Exiting\n");
}
void f2() {
 f3();
 printf("f2 Exiting\n");
}
void f3() {
 printf("f3 Exiting\n");
}

• How many active functions?
– Whose execution is not finished?

the program is here

Contents of a Stack Frame

91

#include <stdio.h>

int main() {
 f1();
 printf("Main Exiting\n");
}
void f1() {
 f1();
 printf("f1 Exiting\n");
}
void f2() {
 f3();
 printf("f2 Exiting\n");
}
void f3() {
 printf("f3 Exiting\n");
}

• How many active functions?
– Whose execution is not finished?

the program is here

• f3
• f2
• f1
• main

Contents of a Stack Frame

92

#include <stdio.h>

int main() {
 f1();
 printf("Main Exiting\n");
}
void f1() {
 f1();
 printf("f1 Exiting\n");
}
void f2() {
 f3();
 printf("f2 Exiting\n");
}
void f3() {
 printf("f3 Exiting\n");
}

• How many active functions?
– Whose execution is not finished?

the program is here

• f3
• f2
• f1
• main

• How many stack frames?
– Number of active functions = 4

Contents of a Stack Frame
• What do we need to store for each active function?

#include <stdio.h>

int main(int argc, char **argv)
{
 int i = 1, j;
 f1();
 j = i + 1 + argc;
 printf("j= %d\n", j);
}
void f1() {
 f1();
 printf("f1 Exiting\n");
}

the program is here

• f1
• main

• What do we need to continue
execution in main?

Contents of a Stack Frame
• What do we need to store for each active function?

• Arguments.
• Local Variables.
• Return Address.

#include <stdio.h>

int main(int argc, char **argv)
{
 int i = 1, j;
 f1();
 j = i + 1 + argc;
 printf("j= %d\n", j);
}
void f1() {
 f1();
 printf("f1 Exiting\n");
}

the program is here

The need for return address

95

#include <stdio.h>

int main() {
 f1();
 printf("Main Exiting\n");
}
void f1() {
 f1();
 printf("f1 Exiting\n");
}
void f2() {
 f3();
 printf("f2 Exiting\n");
}
void f3() {
 printf("f3 Exiting\n");
}

• What happens next?

96

#include <stdio.h>

int main() {
 f1();
 printf("Main Exiting\n");
}
void f1() {
 f1();
 printf("f1 Exiting\n");
}
void f2() {
 f3();
 printf("f2 Exiting\n");
}
void f3() {
 printf("f3 Exiting\n");
}

• What happens next?

The need for return address

97

#include <stdio.h>

int main() {
 f1();
 printf("Main Exiting\n");
}
void f1() {
 f1();
 printf("f1 Exiting\n");
}
void f2() {
 f3();
 printf("f2 Exiting\n");
}
void f3() {
 printf("f3 Exiting\n");
}

• What happens next?

The need for return address

98

#include <stdio.h>

int main() {
 f1();
 printf("Main Exiting\n");
}
void f1() {
 f1();
 printf("f1 Exiting\n");
}
void f2() {
 f3();
 printf("f2 Exiting\n");
}
void f3() {
 printf("f3 Exiting\n");
}

• What happens next?

The need for return address

99

#include <stdio.h>

int main() {
 f1();
 printf("Main Exiting\n");
}
void f1() {
 f1();
 printf("f1 Exiting\n");
}
void f2() {
 f3();
 printf("f2 Exiting\n");
}
void f3() {
 printf("f3 Exiting\n");
}

• What happens next?

1. Return to f2
2. Return to f1
3. Return to main
4. Exit.

The need for return address

100

#include <stdio.h>

int main() {
 f1();
 printf("Main Exiting\n");
}
void f1() {
 f1();
 printf("f1 Exiting\n");
}
void f2() {
 f3();
 printf("f2 Exiting\n");
}
void f3() {
 printf("f3 Exiting\n");
}

• Call order v/s return order!

1. main
2. f1
3. f2
4. f3

1. f3
2. f2
3. f1
4. main

Call Order Return Order

The need for return address

101

#include <stdio.h>

int main() {
 f1();
 printf("Main Exiting\n");
}
void f1() {
 f1();
 printf("f1 Exiting\n");
}
void f2() {
 f3();
 printf("f2 Exiting\n");
}
void f3() {
 printf("f3 Exiting\n");
}

• How to return correctly?

the program is here

We need to store the return
location (or return address)

The need for return address

Contents of a Stack Frame
• What do we need to store for each active function?

• Arguments.
• Local Variables.
• Return Address.

Stack frames

103

#include <stdio.h>

1: int main() {
2: f1();
3: printf("Main Exiting\n");
4: }
5: void f1() {
6: f1();
7: printf("f1 Exiting\n");
10: }
11: void f2() {
12: f3();
13: printf("f2 Exiting\n");
14: }
15: void f3() {
16: printf("f3 Exiting\n");
}the program is here

main local

main args

ret main

f1 local

f1 args

line 3

f2 local

f2 args

line 7

f3 local

f3 args

line 13

Stack Memory

f3 stack
frame

f2 stack
frame

f1 stack
frame

main stack
frame

Stack frames

104

#include <stdio.h>

1: int main() {
2: f1();
3: printf("Main Exiting\n");
4: }
5: void f1() {
6: f1();
7: printf("f1 Exiting\n");
10: }
11: void f2() {
12: f3();
13: printf("f2 Exiting\n");
14: }
15: void f3() {
16: printf("f3 Exiting\n");
}

the program is here

main local

main args

ret main

f1 local

f1 args

line 3

f2 local

f2 args

line 7

Stack Memory

f2 stack
frame

f1 stack
frame

main stack
frame

Pop stack frame and continue using return address

Stack frames

105

#include <stdio.h>

1: int main() {
2: f1();
3: printf("Main Exiting\n");
4: }
5: void f1() {
6: f1();
7: printf("f1 Exiting\n");
10: }
11: void f2() {
12: f3();
13: printf("f2 Exiting\n");
14: }
15: void f3() {
16: printf("f3 Exiting\n");
}

the program is here

main local

main args

ret main

f1 local

f1 args

line 3

Stack Memory

f1 stack
frame

main stack
frame

Pop stack frame and continue using return address

Stack frames

106

#include <stdio.h>

1: int main() {
2: f1();
3: printf("Main Exiting\n");
4: }
5: void f1() {
6: f1();
7: printf("f1 Exiting\n");
10: }
11: void f2() {
12: f3();
13: printf("f2 Exiting\n");
14: }
15: void f3() {
16: printf("f3 Exiting\n");
}

the program is here

main local

main args

ret main

Stack Memory

main stack
frame

Pop stack frame and continue using return address

107

 1 void f1(int x)

 2 {

 3 int a;

 4 a = f3(7, 3.2);

 5 x = a + 5;

 6 ...

 7 }

 8 int f3(int y,
 double z)

{

 10 int m=4;

How stack frames are created?

a

x

ret of f1

f1 stack
frame

108

 1 void f1(int x)

 2 {

 3 int a;

 4 a = f3(7, 3.2);

 5 x = a + 5;

 6 ...

 7 }

 8 int f3(int y,
 double z)

{

 10 int m=4;

How stack frames are created?

a

x

ret of f1

f1 stack
frame

5
f2 stack
frame

Push return address

109

 1 void f1(int x)

 2 {

 3 int a;

 4 a = f3(7, 3.2);

 5 x = a + 5;

 6 ...

 7 }

 8 int f3(int y,
 double z)

{

 10 int m=4;

How stack frames are created?

a

x

ret of f1

f1 stack
frame

y=7
5

f2 stack
frame

Push argument y

110

 1 void f1(int x)

 2 {

 3 int a;

 4 a = f3(7, 3.2);

 5 x = a + 5;

 6 ...

 7 }

 8 int f3(int y,
 double z)

{

 10 int m=4;

How stack frames are created?

a

x

ret of f1

f1 stack
frame

z=3.2

y=7

5

f2 stack
frame

Push argument z

111

 1 void f1(int x)

 2 {

 3 int a;

 4 a = f3(7, 3.2);

 5 x = a + 5;

 6 ...

 7 }

 8 int f3(int y,
 double z)

{

 10 int m=4;

How stack frames are created?

a

x

ret of f1

f1 stack
frame

m=4

z=3.2

y=7

5

f2 stack
frame

Transfer control to f3 and
push local variables

Stack frame memory

• Computer access memory using its address.
• Memory has address : n-bit value

• Stack frame has address
– All elements in stack frame

also has addresses

113

 1 void f1(int x)

 2 {

 3 int a;

 4 a = f3(7, 3.2);

 5 x = a + 5;

 6 ...

 7 }

 8 int f3(int y,
 double z)

{

 10 int m=4;

Stack frame details

Frame of f3
m 106 4

z 105 3.2

y 104 7

RL 103 line 5

Frame of f1
a 102 a =

x 101 x =

RL 100 line ?

Frame Symbol Address Value

114

 1 void f1(int x)

 2 {

 3 int a;

 4 a = f3(7, 3.2);

 5 x = a + 5;

 6 ...

 7 }

 8 int f3(int y,
 double z)

{

 10 int m=4;

Stack frame details

Frame of f3
m 106 4

z 105 3.2

y 104 7

RL 103 line 5

Frame of f1
a 102 a =

x 101 x =

RL 100 line ?

Frame Symbol Address Value

For Humans

